Loading [MathJax]/extensions/Safe.js

Introduction

This notebook is an implementation of Jon Danielsson's Financial Risk Forecasting (Wiley, 2011) in MATLAB 2022a, with annotations and introductory examples. The introductory examples (Appendix) are similar to Appendix C in the original book.

The following code has been adapted from the original, implemented in MATLAB 2022a. Occasional lines of code which require different syntax to run in MATLAB 2022a are also noted in trailing comments.

'Econometrics', 'Optimization' and 'Statistics and Machine learning' toolboxes are used by this script.

Bullet point numbers correspond to the MATLAB Listing numbers in the original book, referred to henceforth as FRF.

More details can be found at the book website: https://www.financialriskforecasting.com/

Last updated: June 2022

Copyright 2011-2022 Jon Danielsson. This code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. The GNU General Public License is available at: https://www.gnu.org/licenses/.


Appendix: An Introduction to MATLAB

Created in MATLAB 2022a (June 2022)

  • M.1: Entering and Printing Data
  • M.2: Vectors, Matrices and Sequences
  • M.3: Importing Data (to be updated)
  • M.4: Basic Summary Statistics
  • M.5: Calculating Moments
  • M.6: Basic Matrix Operations
  • M.7: Statistical Distributions
  • M.8: Statistical Tests
  • M.9: Time Series
  • M.10: Loops and Functions
  • M.11: Basic Graphs
  • M.12: Miscellaneous Useful Functions
In [1]:
% Entering and Printing Data
% Listing M.1
% Last updated June 2018
%
%

x = 10;             % assign x the value 10, silencing output print with ;
disp(x)             % display x
    10


In [2]:
% Vectors, Matrices and Sequences
% Listing M.2
% Last updated June 2018
%
%

y = [1,3,5,7,9]            % lists are denoted by square brackets

y(3)                       % calling 3rd element (MATLAB indices start at 1)

size(y)                    % shows that y is 1 x 5 (a row vector, by default)

length(y)                  % as expected, y has length 5

v = nan(2,3)               % fill a 2 x 3 matrix with NaN values

size(v)                    % as expected, v is size (2,3)

w = repmat([1,2,3]', 2, 3) % repeats matrix twice by rows, thrice by columns

s = 1:10                   % s is a list of integers from 1 to 10 inclusive
y =

     1     3     5     7     9


ans =

     5


ans =

     1     5


ans =

     5


v =

   NaN   NaN   NaN
   NaN   NaN   NaN


ans =

     2     3


w =

     1     1     1
     2     2     2
     3     3     3
     1     1     1
     2     2     2
     3     3     3


s =

     1     2     3     4     5     6     7     8     9    10


In [3]:
% Basic Summary Statistics
% Listing M.3
% Last updated June 2022
%
%

y = [3.14; 15; 9.26; 5];    % List with semicolons is a column vector

sum(y)         % sum of all elements of y
prod(y)        % product of all elements of y
max(y)         % maximum value of y
min(y)         % minimum value of y
range(y)       % difference between max and min value of y
mean(y)        % arithmetic mean
median(y)      % median
var(y)         % variance
cov(y)         % covar matrix = variance for single vector
corrcoef(y)    % corr matrix = [1] for single vector
sort(y)        % sorting in ascending order
log(y)         % natural log
ans =

   32.4000


ans =

   2.1807e+03


ans =

    15


ans =

    3.1400


ans =

   11.8600


ans =

    8.1000


ans =

    7.1300


ans =

   27.7224


ans =

   27.7224


ans =

     1


ans =

    3.1400
    5.0000
    9.2600
   15.0000


ans =

    1.1442
    2.7081
    2.2257
    1.6094


In [4]:
% Calculating Moments
% Listing M.4
% Last updated June 2018
%
%

mean(y)      % mean
var(y)       % variance
std(y)       % unbiased standard deviation, by default
skewness(y)  % skewness
kurtosis(y)  % kurtosis
ans =

    8.1000


ans =

   27.7224


ans =

    5.2652


ans =

    0.4700


ans =

    1.7153


In [5]:
% Basic Matrix Operations
% Listing M.5
% Last updated June 2018
%
%

z = [1, 2; 3, 4]  % z is a 2 x 2 matrix (Note the use of ; as row separator)
x = [1, 2]        % x is a 1 x 2 matrix

%% Note: z * x is undefined since the two matrices are not conformable

z * x'            % this evaluates to a 2 x 1 matrix

vertcat(z,x)      % "stacking" z and x vertically
horzcat(z,x')     % "stacking z and x' horizontally

%% Note: dimensions must match along the combining axis)
z =

     1     2
     3     4


x =

     1     2


ans =

     5
    11


ans =

     1     2
     3     4
     1     2


ans =

     1     2     1
     3     4     2


In [6]:
% Statistical Distributions
% Listing M.6
% Last updated June 2018
%
%


q = -3:1:3                       % specify a set of values

p = 0.1:0.1:0.9                  % specify a set of probabilities

norminv(p, 0, 1)                 % element-wise inverse Normal quantile

tcdf(q, 4)                       % element-wise cdf under Student-t(4)

chi2pdf(q, 2)                    % element-wise pdf under Chisq(2)

%% One can also obtain pseudorandom samples from distributions

x = trnd(5, 100, 1);             % Sampling 100 times from t dist with 5 df

y = normrnd(0, 1, 100, 1);       % Sampling 50 times from a standard normal 

%% Given sample data, we can also obtain MLE estimates of distribution parameters:

res = fitdist(x, "Normal")       % Fitting x to normal dist
q =

    -3    -2    -1     0     1     2     3


p =

    0.1000    0.2000    0.3000    0.4000    0.5000    0.6000    0.7000    0.8000    0.9000


ans =

   -1.2816   -0.8416   -0.5244   -0.2533         0    0.2533    0.5244    0.8416    1.2816


ans =

    0.0200    0.0581    0.1870    0.5000    0.8130    0.9419    0.9800


ans =

         0         0         0    0.5000    0.3033    0.1839    0.1116


res = 

  NormalDistribution

  Normal distribution
       mu = 0.146605   [-0.155625, 0.448836]
    sigma =  1.52317   [1.33736, 1.76943]


In [7]:
% Statistical Tests
% Listing M.7
% Last updated July 2020
%
%

x = trnd(5, 500, 1);                    % Create hypothetical dataset x

[h1, p1, jbstat] = jbtest(x)            % Jarque-Bera test for normality

[h2, p2, lbstat] = lbqtest(x,'lags',20) % Ljung-Box test for serial correlation - Needs Econometrics Toolbox
Warning: P is less than the smallest tabulated value, returning 0.001.
> In jbtest (line 136)

h1 =

     1


p1 =

   1.0000e-03


jbstat =

  398.3104


h2 =

  logical

   0


p2 =

    0.1588


lbstat =

   26.2154


In [8]:
% Time Series
% Listing M.8
% Last updated June 2018
%
%

x = trnd(5, 60, 1); % Create hypothetical dataset x

subplot(1,2,1)
autocorr(x, 20)     % autocorrelation for lags 1:20
subplot(1,2,2)
parcorr(x,20)       % partial autocorrelation for lags 1:20

In [9]:
% Loops and Functions
% Listing M.9
% Last updated June 2018
%
%

%% For loops

for i = 3:7        % iterates through [3,4,5,6,7]
    i^2  
end

%% If-else loops

X = 10;

if (rem(X,3) == 0)
    disp("X is a multiple of 3")
else 
    disp("X is not a multiple of 3")
end
    
%% Functions (example: a simple excess kurtosis function)
%% NOTE: in MATLAB, functions can be defined in 2 locations:
%% 1) in a separate file (e.g. excess_kurtosis.m in this case) in the workspace
%% 2) in the same file as the rest of the code, BUT at the end of the file

%% function k = excess_kurtosis(x, excess) 
%%     if nargin == 1                      % if there is only 1 argument
%%         excess = 3;                     % set excess = 3
%%     end                                 % this is how optional param excess is set
%%     m4 = mean((x-mean(x)).^4);
%%     k = m4/(std(x)^4) - excess;
%% end
ans =

     9


ans =

    16


ans =

    25


ans =

    36


ans =

    49

X is not a multiple of 3

In [10]:
% Basic Graphs
% Listing M.10
% Last updated July 2020
%
%

y = normrnd(0, 1, 50, 1);
z = trnd(4, 50, 1);

subplot(2,2,1)
bar(y)            % bar plot
title("Bar plot")
subplot(2,2,2)
plot(y)           % line plot
title("Line plot")
subplot(2,2,3)
histogram(y)      % histogram
title("Histogram")
subplot(2,2,4)
scatter(y,z)      % scatter plot
title("Scatter plot")

In [11]:
% Miscellaneous Useful Functions
% Listing M.11
% Last updated June 2018
%
%

%% Convert objects from one type to another with int8() etc
%% To check type, use isfloat(object), isinteger(object) and so on
x = 8.0;
isfloat(x)
x = int8(x);
isinteger(x)
ans =

  logical

   1


ans =

  logical

   1



Chapter 1: Financial Markets, Prices and Risk

  • 1.1/1.2: Loading hypothetical stock prices, converting to returns, plotting returns
  • 1.3/1.4: Summary statistics for returns timeseries
  • 1.5/1.6: Autocorrelation function (ACF) plots, Ljung-Box test
  • 1.7/1.8: Quantile-Quantile (QQ) plots
  • 1.9/1.10: Correlation matrix between different stocks
In [12]:
% Download S&P 500 data in MATLAB
% Listing 1.2
% Last updated July 2020
%
%

price = csvread('index.csv', 1, 0);
y=diff(log(price)); % calculate returns

plot(y)             % plot returns
title("S&P500 returns")


% END

In [13]:
% Sample statistics in MATLAB
% Listing 1.4
% Last updated July 2020
%
%

mean(y)
std(y)
min(y)
max(y)
skewness(y)
kurtosis(y)
[h,pValue,stat]=jbtest(y);

%% NOTE: in MATLAB some functions require name-value pairs
%% e.g. [h,pValue,stat]=jbtest(y);
ans =

   2.5816e-04


ans =

    0.0100


ans =

   -0.1020


ans =

    0.1067


ans =

    0.1526


ans =

   16.9812

Warning: P is less than the smallest tabulated value, returning 0.001.
> In jbtest (line 136)

In [14]:
% ACF plots and the Ljung-Box test in MATLAB
% Listing 1.6
% Last updated July 2020
%
%

%% subplots here are just for ease of visualization

subplot(1,2,1)
autocorr(y, 20)
subplot(1,2,2)
autocorr(y.^2, 20)

[h,pValue,stat]=lbqtest(y,'lags',20);          
[h,pValue,stat]=lbqtest(y.^2,'lags',20);

In [15]:
% QQ plots in MATLAB
% Listing 1.8
% Last updated 2011
%
%

%% subplots here are just for ease of visualization

subplot(1,2,1)
qqplot(y)
subplot(1,2,2)
qqplot(y, fitdist(y,'tLocationScale'))

In [16]:
% Download stock prices in MATLAB
% Listing 1.10
% Last updated 2011
%
%

price = csvread('stocks.csv', 1, 0);
y=diff(log(price));
corr(y) % correlation matrix
ans =

    1.0000    0.2297    0.2126
    0.2297    1.0000    0.1451
    0.2126    0.1451    1.0000



Chapter 2: Univariate Volatility Modelling

  • 2.1/2.2: GARCH and t-GARCH estimation
  • 2.3/2.4: APARCH estimation
In [17]:
help tarch
  TARCH(P,O,Q) parameter estimation with different error distributions:
  Normal, Students-T, Generalized Error Distribution, Skewed T
  Estimation of ARCH or GARCH models if o=0 and tarch_type=2
  Estimation of TARCH or GJR asymmetric models if o>0 and tarch_type=1 or 2
 
  USAGE:
    [PARAMETERS] = tarch(EPSILON,P,O,Q)
    [PARAMETERS,LL,HT,VCVROBUST,VCV,SCORES,DIAGNOSTICS] = 
                                    tarch(EPSILON,P,O,Q,ERROR_TYPE,TARCH_TYPE,STARTINGVALS,OPTIONS)
 
  INPUTS:
    EPSILON      - A column of mean zero data
    P            - Positive, scalar integer representing the number of symmetric innovations
    O            - Non-negative scalar integer representing the number of asymmetric innovations (0
                     for symmetric processes)    
    Q            - Non-negative, scalar integer representing the number of lags of conditional
                     variance (0 for ARCH) 
    ERROR_TYPE   - [OPTIONAL] The error distribution used, valid types are:
                     'NORMAL'    - Gaussian Innovations [DEFAULT]
                     'STUDENTST' - T distributed errors
                     'GED'       - Generalized Error Distribution
                     'SKEWT'     - Skewed T distribution
    TARCH_TYPE   - [OPTIONAL] The type of variance process, either
                     1 - Model evolves in absolute values
                     2 - Model evolves in squares [DEFAULT]
    STARTINGVALS - [OPTIONAL] A (1+p+o+q), plus 1 for STUDENTST OR GED (nu), plus 2 for SKEWT
                     (nu,lambda), vector of starting values. 
                      [omega alpha(1) ... alpha(p) gamma(1) ... gamma(o) beta(1) ... beta(q) [nu lambda]]'.
    OPTIONS      - [OPTIONAL] A user provided options structure. Default options are below.
 
  OUTPUTS:
    PARAMETERS   - A 1+p+o+q column vector of parameters with
                   [omega alpha(1) ... alpha(p) gamma(1) ... gamma(o) beta(1) ... beta(q) [nu lambda]]'.
    LL           - The log likelihood at the optimum
    HT           - The estimated conditional variances
    VCVROBUST    - Robust parameter covariance matrix
    VCV          - Non-robust standard errors (inverse Hessian)
    SCORES       - Matrix of scores (# of params by t)
    DIAGNOSTICS  - Structure of optimization outputs and other values useful for functions calling TARCH.
  
  COMMENTS:
  The following (generally wrong) constraints are used:
    (1) omega > 0
    (2) alpha(i) >= 0 for i = 1,2,...,p
    (3) gamma(i) + alpha(i) > 0 for i=1,...,o
    (3) beta(i)  >= 0 for i = 1,2,...,q
    (4) sum(alpha(i) + 0.5*gamma(j) + beta(k)) < 1 for i = 1,2,...p and
    j = 1,2,...o, k=1,2,...,q
    (5) nu>2 of Students T and nu>1 for GED
    (6) -.99<lambda<.99 for Skewed T
 
    The conditional variance, h(t), of a TARCH(P,O,Q) process is modeled as follows:
 
     g(h(t)) = omega
             + alpha(1)*f(r_{t-1}) + ... + alpha(p)*f(r_{t-p})+...
             + gamma(1)*I(t-1)*f(r_{t-1}) +...+ gamma(o)*I(t-o)*f(r_{t-o})+...
             beta(1)*g(h(t-1)) +...+ beta(q)*g(h(t-q))
 
      where f(x) = abs(x)  if tarch_type=1
           g(x) = sqrt(x) if tarch_type=1
           f(x) = x^2     if tarch_type=2
           g(x) = x       if tarch_type=2
 
    Default Options
     options  =  optimset('fminunc');
     options  =  optimset(options , 'TolFun'      , 1e-005);
     options  =  optimset(options , 'TolX'        , 1e-005);
     options  =  optimset(options , 'Display'     , 'iter');
     options  =  optimset(options , 'Diagnostics' , 'on');
     options  =  optimset(options , 'LargeScale'  , 'off');
     options  =  optimset(options , 'MaxFunEvals' , '400*numberOfVariables');
 
   See also TARCH_LIKELIHOOD, TARCH_CORE, TARCH_PARAMETER_CHECK, TARCH_STARTING_VALUES,
   TARCH_TRANSFORM, TARCH_ITRANSFORM 
 
   You should use the MEX files (or compile if not using Win64 Matlab) as they provide speed ups of
   approx 100 times relative to the m file.


In [18]:
% ARCH and GARCH estimation in MATLAB
% Listing 2.2
% Last updated June 2018
%
%

p = csvread('index.csv', 1, 0);

y=diff(log(p))*100;
y=y-mean(y);

%% We multiply returns by 100 and de-mean them

tarch(y,1,0,0);              % ARCH(1)
tarch(y,4,0,0);              % ARCH(4)
tarch(y,4,0,1);              % GARCH(4,1)
tarch(y,1,0,1);              % GARCH(1,1)
tarch(y,1,0,1,'STUDENTST');  % t-GARCH(1,1)
____________________________________________________________
   Diagnostic Information

Number of variables: 2

Functions 
Objective:                            tarch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           3          7868.18                           974
     1           9          7687.07    0.000391319           48.7  
     2          15          7679.24             10           39.5  
     3          18          7671.32              1           46.3  
     4          21          7670.68              1           14.9  
     5          24          7670.62              1          0.659  
     6          27          7670.62              1         0.0146  
     7          30          7670.62              1        0.00104  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 5

Functions 
Objective:                            tarch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           6          7496.14                           339
     1          18          7457.23    0.000576645           64.7  
     2          30          7395.22             10           54.5  
     3          36          7321.82              1           82.3  
     4          42          7292.66              1             31  
     5          48          7291.69              1           24.8  
     6          54          7290.25              1           18.6  
     7          60          7286.58              1             27  
     8          66          7282.48              1           39.3  
     9          72          7280.02              1           27.4  
    10          78          7279.39              1           9.97  
    11          84          7279.27              1           4.89  
    12          90          7279.25              1           4.88  
    13          96          7279.19              1           5.15  
    14         102          7279.09              1           7.43  
    15         108          7278.98              1           6.52  
    16         114          7278.93              1           2.76  
    17         120          7278.92              1          0.442  
    18         126          7278.92              1           0.18  
    19         132          7278.92              1          0.172  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         138          7278.92              1          0.152  
    21         144          7278.92              1          0.114  
    22         150          7278.92              1         0.0896  
    23         156          7278.92              1         0.0543  
    24         162          7278.92              1         0.0139  
    25         168          7278.92              1        0.00256  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 6

Functions 
Objective:                            tarch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           7           6998.6                          28.7
     1          21          6992.09     0.00494757           32.5  
     2          28           6987.8              1           26.8  
     3          35          6975.19              1           20.4  
     4          42          6973.12              1           6.93  
     5          49          6972.72              1           5.56  
     6          56          6972.26              1           6.32  
     7          63          6971.46              1           6.52  
     8          70          6970.14              1           10.8  
     9          77          6968.44              1             12  
    10          84          6966.99              1           4.31  
    11          91          6966.54              1           4.46  
    12          98          6966.28              1           4.17  
    13         105          6966.08              1           4.16  
    14         112           6965.8              1           3.48  
    15         119          6965.46              1            3.7  
    16         126          6965.24              1           3.68  
    17         140          6965.21        0.43681          0.676  
    18         147           6965.2              1          0.729  
    19         154          6965.19              1          0.823  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         161          6965.17              1          0.894  
    21         168          6965.14              1          0.602  
    22         175          6965.13              1          0.623  
    23         182          6965.12              1          0.648  
    24         189          6965.12              1          0.728  
    25         196          6965.09              1           1.43  
    26         203          6965.04              1           2.69  
    27         210          6964.95              1           4.68  
    28         217          6964.83              1           4.71  
    29         224          6964.68              1           2.61  
    30         231          6964.61              1           2.59  
    31         245          6964.59       0.487352          0.232  
    32         252          6964.58              1            0.3  
    33         259          6964.57              1         0.0636  
    34         266          6964.57              1           0.27  
    35         273          6964.56              1          0.326  
    36         280          6964.56              1          0.188  
    37         287          6964.56              1         0.0549  
    38         294          6964.56              1          0.104  
    39         301          6964.56              1          0.103  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    40         308          6964.56              1         0.0581  
    41         315          6964.56              1        0.00853  
    42         322          6964.56              1         0.0148  
    43         329          6964.56              1         0.0105  
    44         336          6964.56              1         0.0038  
    45         455          6964.56        5.05741        0.00917  

Local minimum possible.

fminunc stopped because it cannot decrease the objective function
along the current search direction.


____________________________________________________________
   Diagnostic Information

Number of variables: 3

Functions 
Objective:                            tarch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           4          6976.59                          65.7
     1          12          6969.64      0.0025561           22.7  
     2          16           6968.5              1           17.4  
     3          20          6966.66              1           2.89  
     4          24          6966.62              1           3.34  
     5          28          6966.55              1           3.72  
     6          32           6966.4              1           3.81  
     7          36          6966.19              1           3.62  
     8          40           6966.1              1           1.39  
     9          44          6966.08              1          0.544  
    10          48          6966.07              1         0.0128  
    11          52          6966.07              1        0.00147  
    12          56          6966.07              1       0.000162  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 4

Functions 
Objective:                            tarch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           5           6650.4                          96.1
     1          15          6589.16      0.0045501           60.8  
     2          20          6573.08              1           38.9  
     3          25          6561.18              1           40.1  
     4          30          6558.93              1           33.6  
     5          35          6556.02              1           12.6  
     6          40          6554.59              1           12.7  
     7          45          6552.57              1           13.9  
     8          50           6552.1              1           2.66  
     9          55          6552.07              1           1.95  
    10          60          6552.05              1           2.15  
    11          65           6551.9              1           5.48  
    12          70          6551.65              1            5.9  
    13          80           6551.6            0.5           3.31  
    14          85          6551.58              1           1.74  
    15          90          6551.57              1          0.505  
    16          95          6551.57              1         0.0784  
    17         100          6551.57              1        0.00406  
    18         105          6551.57              1         0.0014  
    19         110          6551.57              1       0.000243  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


In [19]:
% Advanced ARCH and GARCH estimation in MATLAB
% Listing 2.4
% Last updated August 2016
%
%

aparch(y,1,1,1);              % APARCH(1,1)
aparch(y,2,2,1);              % APARCH(2,1)
aparch(y,1,1,1,'STUDENTST');  % t-APARCH(1,1)
____________________________________________________________
   Diagnostic Information

Number of variables: 5

Functions 
Objective:                            aparch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           6          7001.41                          44.2
     1          18          6998.23     0.00282922           70.3  
     2          24          6993.16              1           74.2  
     3          36          6981.98            0.5           91.3  
     4          42          6976.72              1           52.2  
     5          48          6974.16              1           23.8  
     6          54          6973.62              1           18.6  
     7          60           6972.9              1           26.3  
     8          66          6971.86              1           35.2  
     9          72          6970.88              1           23.8  
    10          78           6970.2              1           17.7  
    11          84          6969.83              1           12.8  
    12          90          6969.67              1           9.26  
    13          96          6969.59              1           7.05  
    14         102          6969.45              1           4.66  
    15         108          6969.41              1           2.13  
    16         114           6969.4              1          0.318  
    17         120           6969.4              1         0.0993  
    18         126           6969.4              1         0.0992  
    19         132           6969.4              1         0.0992  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         138           6969.4              1         0.0992  
    21         144           6969.4              1          0.177  
    22         150           6969.4              1          0.329  
    23         156           6969.4              1          0.568  
    24         162           6969.4              1          0.985  
    25         168          6969.39              1           1.71  
    26         174          6969.38              1           3.36  
    27         186          6969.31       0.689954           8.59  
    28         216           6969.3      0.0394375           10.1  
    29         234          6969.14        3.30252           15.9  
    30         252          6968.91       0.276642           21.7  
    31         258          6967.71              1           19.9  
    32         270           6967.4       0.249781           7.52  
    33         276          6966.99              1           9.42  
    34         282          6966.78              1           14.8  
    35         288          6966.22              1           8.07  
    36         300          6965.91       0.678026           11.8  
    37         306          6965.73              1           6.45  
    38         312          6965.63              1           2.84  
    39         318          6965.61              1          0.725  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    40         324           6965.6              1          0.587  
    41         330           6965.6              1          0.388  
    42         336           6965.6              1          0.035  
    43         342           6965.6              1       0.000793  
    44         348           6965.6              1       0.000488  
    45         366           6965.6      0.0988824       0.000204  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 5

Functions 
Objective:                            aparch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           6          7001.41                          44.2
     1          18          6998.23     0.00282922           70.3  
     2          24          6993.16              1           74.2  
     3          36          6981.98            0.5           91.3  
     4          42          6976.72              1           52.2  
     5          48          6974.16              1           23.8  
     6          54          6973.62              1           18.6  
     7          60           6972.9              1           26.3  
     8          66          6971.86              1           35.2  
     9          72          6970.88              1           23.8  
    10          78           6970.2              1           17.7  
    11          84          6969.83              1           12.8  
    12          90          6969.67              1           9.26  
    13          96          6969.59              1           7.05  
    14         102          6969.45              1           4.66  
    15         108          6969.41              1           2.13  
    16         114           6969.4              1          0.318  
    17         120           6969.4              1         0.0993  
    18         126           6969.4              1         0.0992  
    19         132           6969.4              1         0.0992  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         138           6969.4              1         0.0992  
    21         144           6969.4              1          0.177  
    22         150           6969.4              1          0.329  
    23         156           6969.4              1          0.568  
    24         162           6969.4              1          0.985  
    25         168          6969.39              1           1.71  
    26         174          6969.38              1           3.36  
    27         186          6969.31       0.689954           8.59  
    28         216           6969.3      0.0394375           10.1  
    29         234          6969.14        3.30252           15.9  
    30         252          6968.91       0.276642           21.7  
    31         258          6967.71              1           19.9  
    32         270           6967.4       0.249781           7.52  
    33         276          6966.99              1           9.42  
    34         282          6966.78              1           14.8  
    35         288          6966.22              1           8.07  
    36         300          6965.91       0.678026           11.8  
    37         306          6965.73              1           6.45  
    38         312          6965.63              1           2.84  
    39         318          6965.61              1          0.725  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    40         324           6965.6              1          0.587  
    41         330           6965.6              1          0.388  
    42         336           6965.6              1          0.035  
    43         342           6965.6              1       0.000793  
    44         348           6965.6              1       0.000488  
    45         366           6965.6      0.0988824       0.000204  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 7

Functions 
Objective:                            aparch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           8          7001.38                          44.4
     1          24          6998.05      0.0029438           69.9  
     2          32          6992.77              1           74.8  
     3          48          6981.76            0.5           90.2  
     4          56          6976.38              1           52.4  
     5          64          6973.87              1           21.8  
     6          72          6973.32              1           16.1  
     7          80          6972.67              1           29.2  
     8          88          6971.71              1           29.3  
     9          96          6970.54              1           26.1  
    10         104          6969.88              1             14  
    11         112          6969.55              1           11.7  
    12         120          6969.44              1           9.24  
    13         128          6969.35              1           6.32  
    14         136          6969.25              1           4.37  
    15         144           6969.2              1           1.96  
    16         152          6969.19              1          0.426  
    17         160          6969.19              1          0.201  
    18         168          6969.19              1          0.201  
    19         176          6969.19              1          0.201  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         184          6969.19              1          0.299  
    21         192          6969.19              1          0.581  
    22         200          6969.18              1           1.07  
    23         208          6969.18              1           1.88  
    24         216          6969.16              1           3.23  
    25         224          6969.12              1           5.83  
    26         232          6969.07              1           8.09  
    27         240          6968.95              1           8.68  
    28         248          6968.66              1           4.54  
    29         256          6968.61              1           1.61  
    30         264          6968.56              1          0.929  
    31         272          6968.56              1          0.476  
    32         280          6968.56              1          0.534  
    33         288          6968.55              1          0.555  
    34         296          6968.55              1          0.564  
    35         304          6968.55              1          0.582  
    36         312          6968.55              1          0.613  
    37         320          6968.54              1           1.09  
    38         328           6968.5              1           1.58  
    39         336          6968.41              1           3.69  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    40         352           6968.3            0.5              8  
    41         368          6968.15       0.401947           8.53  
    42         376           6967.9              1           6.83  
    43         392           6967.7       0.361892           6.27  
    44         408          6967.38       0.689867           5.87  
    45         416          6967.23              1           4.02  
    46         424          6967.15              1           2.75  
    47         432          6967.13              1           2.29  
    48         440          6967.13              1          0.772  
    49         448          6967.12              1           1.04  
    50         456          6967.12              1           1.14  
    51         464          6967.11              1           1.15  
    52         472           6967.1              1          0.781  
    53         480           6967.1              1          0.438  
    54         488          6967.09              1          0.442  
    55         496          6967.09              1          0.444  
    56         504          6967.09              1          0.449  
    57         512          6967.09              1          0.467  
    58         520          6967.09              1          0.724  
    59         528          6967.07              1           1.17  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    60         536          6967.02              1           1.89  
    61         560          6966.77       0.687943           11.6  
    62         576          6966.73       0.341613           18.9  
    63         584          6966.13              1           12.9  
    64         600          6965.02       0.605236           18.8  
    65         616          6964.38       0.227401            6.1  
    66         632           6963.8       0.698053           6.58  
    67         640          6963.64              1           3.32  
    68         648          6963.61              1           6.05  
    69         656          6963.52              1           4.01  
    70         664          6963.23              1           2.94  
    71         680          6963.19       0.578358           1.56  
    72         688          6963.15              1          0.996  
    73         696          6963.14              1          0.495  
    74         704          6963.14              1          0.431  
    75         712          6963.13              1          0.334  
    76         720          6963.13              1          0.257  
    77         728          6963.13              1          0.043  
    78         736          6963.13              1         0.0247  
    79         744          6963.13              1         0.0118  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    80         752          6963.13              1        0.00122  
    81         760          6963.13              1        0.00269  
    82         768          6963.13              1       0.000305  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 7

Functions 
Objective:                            aparch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           8          7001.38                          44.4
     1          24          6998.05      0.0029438           69.9  
     2          32          6992.77              1           74.8  
     3          48          6981.76            0.5           90.2  
     4          56          6976.38              1           52.4  
     5          64          6973.87              1           21.8  
     6          72          6973.32              1           16.1  
     7          80          6972.67              1           29.2  
     8          88          6971.71              1           29.3  
     9          96          6970.54              1           26.1  
    10         104          6969.88              1             14  
    11         112          6969.55              1           11.7  
    12         120          6969.44              1           9.24  
    13         128          6969.35              1           6.32  
    14         136          6969.25              1           4.37  
    15         144           6969.2              1           1.96  
    16         152          6969.19              1          0.426  
    17         160          6969.19              1          0.201  
    18         168          6969.19              1          0.201  
    19         176          6969.19              1          0.201  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         184          6969.19              1          0.299  
    21         192          6969.19              1          0.581  
    22         200          6969.18              1           1.07  
    23         208          6969.18              1           1.88  
    24         216          6969.16              1           3.23  
    25         224          6969.12              1           5.83  
    26         232          6969.07              1           8.09  
    27         240          6968.95              1           8.68  
    28         248          6968.66              1           4.54  
    29         256          6968.61              1           1.61  
    30         264          6968.56              1          0.929  
    31         272          6968.56              1          0.476  
    32         280          6968.56              1          0.534  
    33         288          6968.55              1          0.555  
    34         296          6968.55              1          0.564  
    35         304          6968.55              1          0.582  
    36         312          6968.55              1          0.613  
    37         320          6968.54              1           1.09  
    38         328           6968.5              1           1.58  
    39         336          6968.41              1           3.69  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    40         352           6968.3            0.5              8  
    41         368          6968.15       0.401947           8.53  
    42         376           6967.9              1           6.83  
    43         392           6967.7       0.361892           6.27  
    44         408          6967.38       0.689867           5.87  
    45         416          6967.23              1           4.02  
    46         424          6967.15              1           2.75  
    47         432          6967.13              1           2.29  
    48         440          6967.13              1          0.772  
    49         448          6967.12              1           1.04  
    50         456          6967.12              1           1.14  
    51         464          6967.11              1           1.15  
    52         472           6967.1              1          0.781  
    53         480           6967.1              1          0.438  
    54         488          6967.09              1          0.442  
    55         496          6967.09              1          0.444  
    56         504          6967.09              1          0.449  
    57         512          6967.09              1          0.467  
    58         520          6967.09              1          0.724  
    59         528          6967.07              1           1.17  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    60         536          6967.02              1           1.89  
    61         560          6966.77       0.687943           11.6  
    62         576          6966.73       0.341613           18.9  
    63         584          6966.13              1           12.9  
    64         600          6965.02       0.605236           18.8  
    65         616          6964.38       0.227401            6.1  
    66         632           6963.8       0.698053           6.58  
    67         640          6963.64              1           3.32  
    68         648          6963.61              1           6.05  
    69         656          6963.52              1           4.01  
    70         664          6963.23              1           2.94  
    71         680          6963.19       0.578358           1.56  
    72         688          6963.15              1          0.996  
    73         696          6963.14              1          0.495  
    74         704          6963.14              1          0.431  
    75         712          6963.13              1          0.334  
    76         720          6963.13              1          0.257  
    77         728          6963.13              1          0.043  
    78         736          6963.13              1         0.0247  
    79         744          6963.13              1         0.0118  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    80         752          6963.13              1        0.00122  
    81         760          6963.13              1        0.00269  
    82         768          6963.13              1       0.000305  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 6

Functions 
Objective:                            aparch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           7          6654.09                           170
     1          21          6630.29     0.00100144           79.7  
     2          28           6622.3              1           79.9  
     3          35          6584.66              1           71.6  
     4          49          6564.75            0.5           23.6  
     5          56          6564.17              1           26.5  
     6          63             6562              1             26  
     7          70          6558.28              1           30.7  
     8          77          6555.09              1           8.35  
     9          84          6554.88              1           8.42  
    10          91          6554.59              1           8.85  
    11          98          6554.43              1           7.54  
    12         105          6554.33              1           3.69  
    13         112          6554.28              1           4.42  
    14         119          6554.25              1           4.93  
    15         126          6554.21              1            5.2  
    16         133          6554.15              1           4.98  
    17         140          6554.11              1           2.92  
    18         147          6554.08              1           3.08  
    19         154          6554.06              1           3.48  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         161          6554.02              1           4.12  
    21         168             6554              1            3.3  
    22         175          6553.99              1            1.3  
    23         182          6553.99              1          0.138  
    24         189          6553.99              1         0.0615  
    25         196          6553.99              1         0.0616  
    26         203          6553.99              1         0.0616  
    27         210          6553.99              1         0.0617  
    28         217          6553.99              1         0.0815  
    29         224          6553.99              1           0.15  
    30         231          6553.99              1          0.262  
    31         238          6553.99              1          0.452  
    32         245          6553.98              1          0.796  
    33         252          6553.97              1           1.53  
    34         287          6553.77       0.289026           15.9  
    35         315          6553.77      0.0104947           17.2  
    36         336          6553.37        3.27591           23.3  
    37         350          6552.72       0.690546           23.5  
    38         364          6552.05       0.358326           7.22  
    39         371          6551.79              1           12.6  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    40         378          6551.67              1           9.02  
    41         385          6551.43              1           6.93  
    42         392          6550.79              1           12.7  
    43         399          6549.97              1           7.97  
    44         413          6549.82            0.5           12.3  
    45         427          6549.63       0.495405           2.38  
    46         434          6549.59              1           2.16  
    47         441          6549.55              1           1.25  
    48         448          6549.53              1          0.692  
    49         455          6549.52              1          0.158  
    50         462          6549.52              1         0.0324  
    51         469          6549.52              1         0.0138  
    52         476          6549.52              1        0.00162  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.


____________________________________________________________
   Diagnostic Information

Number of variables: 6

Functions 
Objective:                            aparch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           7          6654.09                           170
     1          21          6630.29     0.00100144           79.7  
     2          28           6622.3              1           79.9  
     3          35          6584.66              1           71.6  
     4          49          6564.75            0.5           23.6  
     5          56          6564.17              1           26.5  
     6          63             6562              1             26  
     7          70          6558.28              1           30.7  
     8          77          6555.09              1           8.35  
     9          84          6554.88              1           8.42  
    10          91          6554.59              1           8.85  
    11          98          6554.43              1           7.54  
    12         105          6554.33              1           3.69  
    13         112          6554.28              1           4.42  
    14         119          6554.25              1           4.93  
    15         126          6554.21              1            5.2  
    16         133          6554.15              1           4.98  
    17         140          6554.11              1           2.92  
    18         147          6554.08              1           3.08  
    19         154          6554.06              1           3.48  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    20         161          6554.02              1           4.12  
    21         168             6554              1            3.3  
    22         175          6553.99              1            1.3  
    23         182          6553.99              1          0.138  
    24         189          6553.99              1         0.0615  
    25         196          6553.99              1         0.0616  
    26         203          6553.99              1         0.0616  
    27         210          6553.99              1         0.0617  
    28         217          6553.99              1         0.0815  
    29         224          6553.99              1           0.15  
    30         231          6553.99              1          0.262  
    31         238          6553.99              1          0.452  
    32         245          6553.98              1          0.796  
    33         252          6553.97              1           1.53  
    34         287          6553.77       0.289026           15.9  
    35         315          6553.77      0.0104947           17.2  
    36         336          6553.37        3.27591           23.3  
    37         350          6552.72       0.690546           23.5  
    38         364          6552.05       0.358326           7.22  
    39         371          6551.79              1           12.6  
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
    40         378          6551.67              1           9.02  
    41         385          6551.43              1           6.93  
    42         392          6550.79              1           12.7  
    43         399          6549.97              1           7.97  
    44         413          6549.82            0.5           12.3  
    45         427          6549.63       0.495405           2.38  
    46         434          6549.59              1           2.16  
    47         441          6549.55              1           1.25  
    48         448          6549.53              1          0.692  
    49         455          6549.52              1          0.158  
    50         462          6549.52              1         0.0324  
    51         469          6549.52              1         0.0138  
    52         476          6549.52              1        0.00162  

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.



Chapter 3: Multivariate Volatility Models

  • 3.1/3.2: Loading hypothetical stock prices
  • 3.3/3.4: EWMA estimation
  • 3.5/3.6: OGARCH estimation (unavailable as of June 2018)
  • 3.7/3.8: DCC estimation (unavailable as of June 2018)
  • 3.9/3.10: Comparison of EWMA, OGARCH, DCC (unavailable as of June 2018)
In [20]:
% Download stock prices in MATLAB
% Listing 3.2
% Last updated August 2016
%
%

p = csvread('stocks.csv',1,0);
p = p(:,[1,2]); % consider first two stocks

y = diff(log(p))*100; % convert prices to returns
y(:,1)=y(:,1)-mean(y(:,1)); % subtract mean
y(:,2)=y(:,2)-mean(y(:,2));
T = length(y);

In [21]:
% EWMA in MATLAB
% Listing 3.4
% Last updated June 2018
%
%

%% create a matrix to hold covariance matrix for each t
EWMA = nan(T,3); 
lambda = 0.94;
S = cov(y);                 % initial (t=1) covar matrix
EWMA(1,:) = S([1,4,2]);     % extract var and covar
for i = 2:T                 % loop though the sample
    S = lambda*S+(1-lambda)* y(i-1,:)'*y(i-1,:);
    EWMA(i,:) = S([1,4,2]); % convert matrix to vector
end
EWMArho = EWMA(:,3)./sqrt(EWMA(:,1).*EWMA(:,2)); % calculate correlations

In [22]:
% OGARCH in MATLAB
% Listing 3.6
% Last updated August 2016
%
%

[par, Ht] = o_mvgarch(y,2, 1,1,1);
Ht = reshape(Ht,4,T)';
%% Ht comes from o_mvgarch as a 3D matrix, this transforms it into a 2D matrix
OOrho = Ht(:,3) ./ sqrt(Ht(:,1) .* Ht(:,4));

%% OOrho is a vector of correlations

In [ ]:
% DCC in MATLAB
% Listing 3.8
% Last updated June 2022
%
%

%%The function 'dcc' in MFE toolbox currently cannot work in MATLAB R2022a. 
%%The function 'dcc' use one MATLAB Optimization toolbox function 'fmincon'.
%%The changes of 'fmincon' cause this problem.
%%This block can work on Optimization 8.3

[p, lik, Ht] = dcc(y,1,1,1,1);
Ht = reshape(Ht,4,T)';
DCCrho = Ht(:,3) ./ sqrt(Ht(:,1) .* Ht(:,4));

%% DCCrho is a vector of correlations
In [ ]:
% Correlation comparison in MATLAB
% Listing 3.10
% Last updated June 2018
%
%

plot([EWMArho,OOrho,DCCrho])
legend('EWMA','DCC','OGARCH','Location','SouthWest')


Chapter 4: Risk Measures

  • 4.1/4.2: Expected Shortfall (ES) estimation under normality assumption
In [23]:
% ES in MATLAB
% Listing 4.2
% Last updated August 2016
%
%

p = [0.5,0.1,0.05,0.025,0.01,0.001];
VaR = -norminv(p)
ES = normpdf(norminv(p))./p
VaR =

         0    1.2816    1.6449    1.9600    2.3263    3.0902


ES =

    0.7979    1.7550    2.0627    2.3378    2.6652    3.3671



Chapter 5: Implementing Risk Forecasts

  • 5.1/5.2: Loading hypothetical stock prices, converting to returns
  • 5.3/5.4: Univariate HS Value at Risk (VaR)
  • 5.5/5.6: Multivariate HS VaR
  • 5.7/5.8: Univariate ES VaR
  • 5.9/5.10: Normal VaR
  • 5.11/5.12: Portfolio Normal VaR
  • 5.13/5.14: Student-t VaR (unavailable as of June 2018)
  • 5.15/5.16: Normal ES VaR
  • 5.17/5.18: Direct Integration Normal ES VaR
  • 5.19/5.20: MA Normal VaR
  • 5.21/5.22: EWMA VaR
  • 5.23/5.24: Two-asset EWMA VaR
  • 5.25/5.26: GARCH(1,1) VaR
In [24]:
% Download stock prices in MATLAB
% Listing 5.2
% Last updated July 2020
%
%

stocks = csvread('stocks.csv',1,0);
p1 = stocks(:,1);             % consider first two stocks
p2 = stocks(:,2); 

y1=diff(log(p1));             % convert prices to returns
y2=diff(log(p2));
y=[y1 y2];
T=length(y1);
value = 1000;                 % portfolio value
p = 0.01;                     % probability

In [25]:
% Univariate HS VaR in MATLAB
% Listing 5.4
% Last updated July 2020
%
%

ys = sort(y1);   % sort returns
op = ceil(T*p);  % p percent smallest, rounded up to meet VaR probability requirement
VaR1 = -ys(op)*value
VaR1 =

   17.4982


In [26]:
% Multivariate HS VaR in MATLAB
% Listing 5.6
% Last updated 2011
%
%

w = [0.3; 0.7];    % vector of portfolio weights
yp = y*w;          % portfolio returns
yps = sort(yp);
VaR2 = -yps(op)*value
VaR2 =

   18.7263


In [27]:
% Univariate ES in MATLAB
% Listing 5.8
% Last updated 2011
%
%

ES1 = -mean(ys(1:op))*value
ES1 =

   22.5634


In [28]:
% Normal VaR in MATLAB
% Listing 5.10
% Last updated 2011
%
%

sigma = std(y1); % estimate volatility
VaR3 = -sigma * norminv(p) * value
VaR3 =

   14.9496


In [29]:
% Portfolio normal VaR in MATLAB
% Listing 5.12
% Last updated 2011
%
%

sigma = sqrt(w' * cov(y) * w); % portfolio volatility
VaR4 = - sigma * norminv(p) *  value
VaR4 =

   17.0411


In [30]:
% Student-t VaR in MATLAB
% Listing 5.14
% Last updated 2011
%
%

scy1=y1*100;          % scale the returns
res=mle(scy1,'distribution','tlocationscale');
sigma1 = res(2)/100;  % rescale the volatility
nu = res(3);
VaR5 = - sigma1 * tinv(p,nu) * value
VaR5 =

   17.1234


In [31]:
% Normal ES in MATLAB
% Listing 5.16
% Last updated June 2018
%
%

sigma = std(y1);
ES2=sigma*normpdf(norminv(p))/p * value
ES2 =

   17.1272


In [32]:
% Direct integration ES in MATLAB
% Listing 5.18
% Last updated 2011
%
%

VaR = -norminv(p);
ES = -sigma*quad(@(q) q.*normpdf(q),-6,-VaR)/p*value
ES =

   17.1266


In [33]:
% MA normal VaR in MATLAB
% Listing 5.20
% Last updated June 2018
%
%

WE=20;
for t=T-5:T
    t1=t-WE+1;
    window=y1(t1:t);  % estimation window
    sigma=std(window);
    VaR6 = -sigma * norminv(p) * value
end
VaR6 =

   16.0505


VaR6 =

   16.1491


VaR6 =

   18.8543


VaR6 =

   18.8821


VaR6 =

   16.2305


VaR6 =

   16.1698


In [34]:
% EWMA VaR in MATLAB
% Listing 5.22
% Last updated 2011
%
%

lambda = 0.94;	
s11 = var(y1(1:30)); % initial variance
for t = 2:T	
    s11 = lambda * s11  + (1-lambda) * y1(t-1)^2;
end
VaR7 = -norminv(p) * sqrt(s11) * value
VaR7 =

   16.7534


In [35]:
% Two-asset EWMA VaR in MATLAB
% Listing 5.24
% Last updated 2011
%
%

s = cov(y);               % initial covariance
for t = 2:T
    s = lambda * s +  (1-lambda) * y(t-1,:)' * y(t-1,:);
end
sigma = sqrt(w' * s * w); % portfolio vol
VaR8 = - sigma * norminv(p) * value
VaR8 =

   20.5036


In [36]:
% GARCH in MATLAB
% Listing 5.26
% Last updated August 2016
%
%

[parameters,ll,ht]=tarch(y1,1,0,1);
omega = parameters(1)
alpha = parameters(2)
beta = parameters(3)
sigma2 = omega + alpha*y1(end)^2 + beta*ht(end) % calc sigma2 for t+1
VaR9 = -sqrt(sigma2) * norminv(p) * value
____________________________________________________________
   Diagnostic Information

Number of variables: 3

Functions 
Objective:                            tarch_likelihood
Gradient:                             finite-differencing
Hessian:                              bfgs
 

Algorithm selected
   quasi-newton


____________________________________________________________
   End diagnostic information
                                                        First-order 
 Iteration  Func-count       f(x)        Step-size       optimality
     0           4         -20893.3                          31.2
     1          12         -20895.9     0.00481557           15.9  
     2          16           -20897              1             10  
     3          20         -20898.6              1           7.49  
     4          28         -20900.8             10           13.9  
     5          32         -20902.8              1           14.4  
     6          36         -20903.6              1           2.14  
     7          40         -20903.6              1           1.34  
     8          44         -20903.6              1          0.524  
     9          48         -20903.6              1         0.0392  
    10          52         -20903.6              1       0.000925  
    11          56         -20903.6              1       0.000711  
    12          68         -20903.6       0.112986        0.00033  

Local minimum possible.

fminunc stopped because the size of the current step is less than
the value of the step size tolerance.


omega =

   9.6214e-07


alpha =

    0.0603


beta =

    0.9167


sigma2 =

   5.2688e-05


VaR9 =

   16.8862



Chapter 6: Analytical Value-at-Risk for Options and Bonds

  • 6.1/6.2: Black-Scholes function definition
  • 6.3/6.4: Black-Scholes option price calculation example
In [ ]:
% Black-Scholes function in MATLAB
% Listing 6.2
% Last updated 2011
%
%

%% To run this code block in Jupyter notebook:
%% delete all lines above the line with file bs.m, then run




%%file bs.m
function  res = bs(K,P,r,sigma,T)
	d1 = (log(P./K)+(r+(sigma^2)/2)*T)./(sigma*sqrt(T));
	d2 = d1 - sigma*sqrt(T);
	res.Call = P.*normcdf(d1,0,1)-K.*exp(-r*T).*normcdf(d2,0,1);
	res.Put = K.*exp(-r*T).*normcdf(-d2,0,1)-P.*normcdf(-d1,0,1);
	res.Delta.Call = normcdf(d1,0,1);
	res.Delta.Put = res.Delta.Call -1;
	res.Gamma = normpdf(d1,0,1)./(P*sigma*sqrt(T));
end
In [37]:
% Black-Scholes in MATLAB
% Listing 6.4
% Last updated 2011
%
%

f=bs(90,100,0.05,0.2,0.5)
f = 

  struct with fields:

     Call: 13.4985
      Put: 1.2764
    Delta: [1x1 struct]
    Gamma: 0.0172



Chapter 7: Simulation Methods for VaR for Options and Bonds

  • 7.1/7.2: Plotting normal distribution transformation
  • 7.3/7.4: Random number generation from Uniform(0,1), Normal(0,1)
  • 7.5/7.6: Bond pricing using yield curve
  • 7.7/7.8: Yield curve simulations
  • 7.9/7.10: Bond price simulations
  • 7.11/7.12: Black-Scholes analytical pricing of call
  • 7.13/7.14: Black-Scholes Monte Carlo simulation pricing of call
  • 7.15/7.16: Option density plots
  • 7.17/7.18: VaR simulation of portfolio with only underlying
  • 7.19/7.20: VaR simulation of portfolio with only call
  • 7.21/7.22: VaR simulation of portfolio with call, put and underlying
  • 7.23/7.24: Simulated two-asset returns
  • 7.25/7.26: Two-asset portfolio VaR
  • 7.27/7.28: Two-asset portfolio VaR with a call
In [38]:
% Transformation in MATLAB
% Listing 7.2
% Last updated July 2020
%
%

x=-3:0.1:3;
plot(x,normcdf(x))
title("CDF of Normal Distribution")

In [39]:
% Various RNs in MATLAB
% Listing 7.4
% Last updated August 2016
%
%

rng default; % set seed

S=10;

rand(S,1)
randn(S,1)
trnd(4,S,1)
ans =

    0.8147
    0.9058
    0.1270
    0.9134
    0.6324
    0.0975
    0.2785
    0.5469
    0.9575
    0.9649


ans =

   -1.3499
    3.0349
    0.7254
   -0.0631
    0.7147
   -0.2050
   -0.1241
    1.4897
    1.4090
    1.4172


ans =

    1.2458
   -1.8803
    0.4892
    2.4722
    0.5898
    1.0088
    0.8056
   -0.2653
    0.2206
   -0.8372


In [40]:
% Price bond in MATLAB
% Listing 7.6
% Last updated July 2020
%
%

yield = [5.00 5.69 6.09 6.38 6.61...
         6.79 6.94 7.07 7.19 7.30]; % yield curve
T = length(yield); 
r=0.07;                             % initial yield rate
Par=10;                             % par value
coupon=r*Par;                       % coupon payments
cc=zeros(1,T)+coupon;               % vector of cash flows 
cc(T)=cc(T)+Par;                    % add par to cash flows
P=sum(cc./((1+yield./100).^(1:T)))  % calculate price
P =

    9.9132


In [41]:
% Simulate yields in MATLAB
% Listing 7.8
% Last updated July 2020
%
%

randn('state',123);         % set the seed
sigma = 1.5;                % daily yield volatility
S = 8;                      % number of simulations
r = randn(1,S)*sigma;       % generate random numbers

ysim=nan(T,S);
for i=1:S
    ysim(:,i)=yield+r(i);
end
ysim=repmat(yield',1,S)+repmat(r,T,1);
plot(ysim)
title("Simulated yield curves")

In [42]:
% Simulate bond prices in MATLAB
% Listing 7.10
% Last updated July 2020
%
%

SP = nan(S,1);
for s = 1:S                                        % S simulations
    SP(s) = sum(cc./(1+ysim(:,s)'./100).^((1:T)));
end
SP = SP-(mean(SP) - P);                            % correct for mean
bar(SP)

S = 50000;
rng("default")
r = randn(S,1) * sigma;
ysim = nan(T,S);
for i = 1:S
    ysim(:,i) = yield' + r(i);
end

SP = nan(S,1);
for i = 1:S
    SP(i) = sum(cc./(1+ysim(:,i)'./100).^((1:T)));
end

SP = SP  - (mean(SP)-P);

histfit(SP)
title("Histogram of simulated bond prices with fitted normal")

In [43]:
% Black-Scholes valuation in MATLAB
% Listing 7.12
% Last updated July 2020
%
%

P0 = 50;                      % initial spot price
sigma = 0.2;                  % annual volatility
r = 0.05;                     % annual interest
T = 0.5;                      % time to expiration
X = 40;                       % strike price
f = bs(X,P0,r,sigma,T)        % analytical call price

%% This calculation uses the Black-Scholes pricing function (Listing 6.1/6.2)
f = 

  struct with fields:

     Call: 11.0873
      Put: 0.0997
    Delta: [1x1 struct]
    Gamma: 0.0107


In [44]:
% Black-Scholes simulation in MATLAB
% Listing 7.14
% Last updated July 2020
%
%

randn('state',0);            % set seed
S = 1e6;                     % number of simulations
ysim = randn(S,1)*sigma*sqrt(T)-0.5*T*sigma^2; % sim returns, lognorm corrected
F = P0*exp(r*T)*exp(ysim);   % sim future prices
SP = F-X;                    % payoff
SP(find(SP < 0)) = 0;        % set negative outcomes to zero
fsim = SP * exp(-r*T) ;      % discount
mean(fsim)                   % simulated price
ans =

   11.0996


In [45]:
% Option density plots in MATLAB
% Listing 7.16
% Last updated July 2020
%
%

subplot(1,2,1)
histfit(F);
title("Simulated prices");
xline(X, 'LineWidth', 1, 'label', 'Strike');

subplot(1,2,2)
hist(fsim,100);
title("Option price density");
xline(mean(fsim), 'LineWidth', 1, 'label', 'Call');

In [46]:
% Simulate VaR in MATLAB
% Listing 7.18
% Last updated 2011
%
%

randn('state',0);   % set seed
S = 1e7;            % number of simulations
s2 = 0.01^2;        % daily variance
p = 0.01;           % probability
r = 0.05;           % annual riskfree rate
P = 100;            % price today
ysim = randn(S,1)*sqrt(s2)+r/365-0.5*s2; % sim returns
Psim = P*exp(ysim);  % sim future prices 
q = sort(Psim-P);  % simulated P/L
VaR1 = -q(S*p)
VaR1 =

    2.2906


In [47]:
% Simulate option VaR in MATLAB
% Listing 7.20
% Last updated 2011
%
%

T = 0.25;                           % time to expiration
X = 100;                            % strike price
sigma = sqrt(s2*250);               % annual volatility
f = bs(X,P,r,sigma,T);              % analytical call price
fsim=bs(X,Psim,r,sigma,T-(1/365));  % sim option prices
q = sort(fsim.Call-f.Call);         % simulated P/L
VaR2 = -q(p*S)
VaR2 =

    1.2150


In [48]:
% Example 7.3 in MATLAB
% Listing 7.22
% Last updated 2011
%
%

X1 = 100;
X2 = 110;
f1 = bs(X1,P,r,sigma,T);
f2 = bs(X2,P,r,sigma,T);  
f1sim=bs(X1,Psim,r,sigma,T-(1/365));
f2sim=bs(X2,Psim,r,sigma,T-(1/365));
q = sort(f1sim.Call+f2sim.Put+Psim-f1.Call-f2.Put-P); 
VaR3 = -q(p*S)
VaR3 =

    1.4951


In [49]:
% Simulated two-asset returns in MATLAB
% Listing 7.24
% Last updated 2011
%
%

randn('state',12)                 % set seed
mu = [r/365 r/365]';              % return mean
Sigma=[0.01 0.0005; 0.0005 0.02]; % covariance matrix
y = mvnrnd(mu,Sigma,S);           % simulated returns

In [50]:
% Two-asset VaR in MATLAB
% Listing 7.26
% Last updated 2011
%
%

K = 2; 
P = [100 50]';                        % prices
x = [1 1]';                           % number of assets
Port = P'*x;                          % portfolio at t
Psim = repmat(P,1,S)' .*exp(y);       % simulated prices
PortSim=Psim * x;                     % simulated portfolio value
q = sort(PortSim-Port);               % simulated P/L
VaR4 = -q(S*p)
VaR4 =

   25.9700


In [51]:
% A two-asset case in MATLAB with an option
% Listing 7.28
% Last updated 2011
%
%

f = bs(P(2),P(2),r,sigma,T);
fsim=bs(P(2),Psim(:,2),r,sigma,T-(1/365));
q = sort(fsim.Call+Psim(:,1)-f.Call-P(1)); 
VaR5 = -q(p*S)
VaR5 =

   20.8125



Chapter 8: Backtesting and Stress Testing

  • 8.1/8.2: Loading hypothetical stock prices, converting to returns
  • 8.3/8.4: Setting up backtest
  • 8.5/8.6: Running backtest for EWMA/MA/HS/GARCH VaR
  • 8.7/8.8: Backtesting analysis for EWMA/MA/HS/GARCH VaR
  • 8.9/8.10: Bernoulli coverage test
  • 8.11/8.12: Independence test
  • 8.13/8.14: Running Bernoulli/Independence test on backtests
  • 8.15/8.16: Running backtest for EWMA/HS ES
  • 8.17/8.18: Backtesting analysis for EWMA/HS ES
In [52]:
% Load data in MATLAB
% Listing 8.2
% Last updated August 2016
%
%

price = csvread('index.csv', 1, 0);

y=diff(log(price)); % get returns

In [53]:
% Set backtest up in MATLAB
% Listing 8.4
% Last updated July 2020
%
%

T = length(y);  % number of obs for return y
WE = 1000;      % estimation window length 
p = 0.01;       % probability
l1 = ceil(WE*p) ;     % HS observation
value = 1;      % portfolio value
VaR = NaN(T,4); % matrix for forecasts
%% EWMA setup
lambda = 0.94;
s11 = var(y);
for t = 2:WE
    s11=lambda*s11+(1-lambda)*y(t-1)^2;
end

In [ ]:
% Running backtest in MATLAB
% Listing 8.6
% Last updated June 2018
%
%

for t = WE+1:T
    t1 = t-WE;          % start of the data window
    t2 = t-1;           % end of data window
    window = y(t1:t2) ; % data for estimation
    s11 = lambda*s11  + (1-lambda)*y(t-1)^2;
    VaR(t,1) = -norminv(p) * sqrt(s11)  *value; % EWMA
    VaR(t,2) = -std(window)*norminv(p)*value; % MA
    ys = sort(window);
    VaR(t,3) = -ys(l1)*value; % HS
    [par,ll,ht]=tarch(window,1,0,1);
    h=par(1)+par(2)*window(end)^2+par(3)*ht(end);
    VaR(t,4) = -norminv(p)*sqrt(h)*value; % GARCH(1,1)
end
In [54]:
% Backtesting analysis in MATLAB
% Listing 8.8
% Last updated July 2020
%
%

names = ["EWMA", "MA", "HS", "GARCH"];
for i=1:4
    VR = length(find(y(WE+1:T)<-VaR(WE+1:T,i)))/(p*(T-WE)); 
    s = std(VaR(WE+1:T,i));         
    disp([names(i), "Violation Ratio:", VR, "Volatility:", s])          
end
plot([y(WE+1:T) VaR(WE+1:T,:)])
    "EWMA"    "Violation Ratio:"    "0"    "Volatility:"    <missing>

    "MA"    "Violation Ratio:"    "0"    "Volatility:"    <missing>

    "HS"    "Violation Ratio:"    "0"    "Volatility:"    <missing>

    "GARCH"    "Violation Ratio:"    "0"    "Volatility:"    <missing>


In [ ]:
% Bernoulli coverage test in MATLAB
% Listing 8.10
% Last updated July 2020
%
%

%% To run this code block in Jupyter notebook:
%% delete all lines above the line with bern_test.m, then run





%%file bern_test.m

function res=bern_test(p,v)
    lv = length(v);
    sv = sum(v);
    al = log(p)*sv + log(1-p)*(lv-sv);
    bl = log(sv/lv)*sv + log(1-sv/lv)*(lv-sv)
	res=-2*(al-bl);
end
In [ ]:
% Independence test in MATLAB
% Listing 8.12
% Last updated July 2020
%
%

%% To run this code block in Jupyter notebook:
%% delete all lines above the line with ind_test.m, then run





%%file ind_test.m

function res=ind_test(V)
	T=length(V);
	J=zeros(T,4);
	for i = 2:T
		J(i,1)=V(i-1)==0 & V(i)==0;
		J(i,2)=V(i-1)==0 & V(i)==1;
		J(i,3)=V(i-1)==1 & V(i)==0;
		J(i,4)=V(i-1)==1 & V(i)==1;
	end	
	V_00=sum(J(:,1));
	V_01=sum(J(:,2));
	V_10=sum(J(:,3));
	V_11=sum(J(:,4));
	p_00=V_00/(V_00+V_01);
	p_01=V_01/(V_00+V_01);
	p_10=V_10/(V_10+V_11);
	p_11=V_11/(V_10+V_11);
	hat_p=(V_01+V_11)/(V_00+V_01+V_10+V_11);
    
    al = log(1-hat_p)*(V_00+V_10) + log(hat_p)*(V_01+V_11);
    bl = log(p_00)*V_00 + log(p_01)*V_01 + log(p_10)*V_10 + log(p_11)*V_11;
	res= -2*(al-bl);
end
In [55]:
% Backtesting S&P 500 in MATLAB
% Listing 8.14
% Last updated July 2020
%
%

names = ["EWMA", "MA", "HS", "GARCH"];
ya=y(WE+1:T);
VaRa=VaR(WE+1:T,:);
for i=1:4
	q=find(y(WE+1:T)<-VaR(WE+1:T,i));
	v=VaRa*0;
	v(q,i)=1;
	ber=bern_test(p,v(:,i));
	in=ind_test(v(:,i));
	disp([names(i), "Bernoulli Statistic:", ber, "P-value:", 1-chi2cdf(ber,1),...
    "Independence Statistic:", in, "P-value:", 1-chi2cdf(in,1)])
end
bl =

   NaN

    "EWMA"    "Bernoulli Statis..."    <missing>    "P-value:"    <missing>    "Independence Sta..."    <missing>    "P-value:"    <missing>


bl =

   NaN

    "MA"    "Bernoulli Statis..."    <missing>    "P-value:"    <missing>    "Independence Sta..."    <missing>    "P-value:"    <missing>


bl =

   NaN

    "HS"    "Bernoulli Statis..."    <missing>    "P-value:"    <missing>    "Independence Sta..."    <missing>    "P-value:"    <missing>


bl =

   NaN

    "GARCH"    "Bernoulli Statis..."    <missing>    "P-value:"    <missing>    "Independence Sta..."    <missing>    "P-value:"    <missing>


In [56]:
% Backtest ES in MATLAB
% Listing 8.16
% Last updated 2011
%
%

VaR = NaN(T,2);  % VaR forecasts for 2 models 
ES = NaN(T,2);   % ES forecasts for 2 models 
for t = WE+1:T
    t1 = t-WE; 
    t2 = t-1; 
    window = y(t1:t2) ;
    
    s11 = lambda * s11  + (1-lambda) * y(t-1)^2; 
    VaR(t,1) = -norminv(p) * sqrt(s11)  *value; % EWMA
    ES(t,1) = sqrt(s11) * normpdf(norminv(p)) / p;

    ys = sort(window);
    VaR(t,2) = -ys(l1) * value;          % HS
    ES(t,2) = -mean(ys(1:l1)) * value;  
end

In [57]:
% ES in MATLAB
% Listing 8.18
% Last updated July 2020
%
%

names = ["EWMA", "HS"];
VaRa = VaR(WE+1:T,:);
ESa = ES(WE+1:T,:);
for i = 1:2
	q = find(ya <= -VaRa(:,i));
	nES = mean(ya(q) ./ -ESa(q,i));
	disp([names(i), nES])
end
    "EWMA"    "1.223"

    "HS"    "1.0537"



Chapter 9: Extreme Value Theory

  • 9.1/9.2: Calculation of tail index from returns
In [58]:
% Hill estimator in MATLAB
% Listing 9.2
% Last updated 2011
%
%

ysort = sort(y);                            % sort the returns
CT = 100;                                   % set the threshold
iota = 1/mean(log(ysort(1:CT)/ysort(CT+1))) % get the tail index

% END
iota =

    2.6297