Chapter 6. Analytical Value–at–Risk for Options and Bonds (in MATLAB/Python)


Copyright 2011 - 2019 Jon Danielsson. This code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. The GNU General Public License is available at: https://www.gnu.org/licenses/.


Listing 6.1/6.2: Black-Scholes function in MATLAB
Last updated 2011

%% To run this code block in Jupyter notebook:
%% delete all lines above the line with file bs.m, then run
%%file bs.m
function  res = bs(K,P,r,sigma,T)
	d1 = (log(P./K)+(r+(sigma^2)/2)*T)./(sigma*sqrt(T));
	d2 = d1 - sigma*sqrt(T);
	res.Call = P.*normcdf(d1,0,1)-K.*exp(-r*T).*normcdf(d2,0,1);
	res.Put = K.*exp(-r*T).*normcdf(-d2,0,1)-P.*normcdf(-d1,0,1);
	res.Delta.Call = normcdf(d1,0,1);
	res.Delta.Put = res.Delta.Call -1;
	res.Gamma = normpdf(d1,0,1)./(P*sigma*sqrt(T));
end
		
Listing 6.1/6.2: Black-Scholes function in Python
Last updated June 2018

import numpy as np
from scipy import stats
def bs(X, P, r, sigma, T):
    d1 = (np.log(P/X) + (r + 0.5 * sigma**2)*T)/(sigma * np.sqrt(T))
    d2 = d1 - sigma * np.sqrt(T)
    Call = P * stats.norm.cdf(d1) - X * np.exp(-r * T) * stats.norm.cdf(d2)
    Put = X * np.exp(-r * T) * stats.norm.cdf(-d2) - P * stats.norm.cdf(-d1)
    Delta_Call = stats.norm.cdf(d1)
    Delta_Put = Delta_Call - 1
    Gamma = stats.norm.pdf(d1) / (P * sigma * np.sqrt(T))
    return {"Call": Call, "Put": Put, "Delta_Call": Delta_Call, "Delta_Put": Delta_Put, "Gamma": Gamma}
		

Listing 6.3/6.4: Black-Scholes in MATLAB
Last updated 2011

f=bs(90,100,0.05,0.2,0.5)
		
Listing 6.3/6.4: Black-Scholes in Python
Last updated June 2018

f = bs(90, 100, 0.05, 0.2, 0.5)
print (f)